Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
StableToVaultZapper
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 1 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;
import {ERC20} from "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC4626} from "openzeppelin-contracts/contracts/interfaces/IERC4626.sol";
import {BoldConverter, IBoldToken} from "../Dependencies/BoldConverter.sol";
import {IERC7540Deposit, IERC7540Redeem} from "../Interfaces/IERC7540.sol";
interface IVaultSafe {
function safe() external view returns (address);
}
contract StableToVaultZapper {
using SafeERC20 for IERC20Metadata;
BoldConverter private immutable _boldConverter;
address private immutable sbvUSD;
constructor(BoldConverter boldConverter, address vault) {
require(vault != address(0), "Invalid vault");
_boldConverter = boldConverter;
sbvUSD = vault;
// approve vault to pull bold
IERC20Metadata(address(boldConverter.bvUSD())).approve(
address(sbvUSD),
type(uint256).max
);
}
function deposit(
IERC20Metadata asset,
uint256 amount
) external returns (uint256 shares) {
require(_boldConverter.isValidPath(asset), "Invalid asset");
// pull asset
asset.safeTransferFrom(msg.sender, address(this), amount);
// approve converter
asset.safeIncreaseAllowance(address(_boldConverter), amount);
// exchange for bvUSD
uint256 boldAmount = _boldConverter.deposit(asset, amount);
// stake for sbvUSD
shares = IERC4626(sbvUSD).deposit(boldAmount, msg.sender);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;
import {ERC20} from "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IBoldToken} from "../Interfaces/IBoldToken.sol";
import "./Owned.sol";
contract BoldConverter is Owned {
uint256 public constant MAX_FEE = 10000;
IBoldToken public bvUSD;
struct Path {
address underlyingReceiver;
uint256 underlyingDecimals;
uint256 withdrawalFee;
}
mapping(IERC20Metadata => Path) private _underlyingPaths;
event NewPath(IERC20Metadata indexed underlying);
event DeletedPath(IERC20Metadata indexed underlying);
constructor(
IERC20Metadata[] memory underlyings_,
Path[] memory paths_,
address bvUSD_
) Owned(msg.sender) {
_setPaths(underlyings_, paths_);
bvUSD = IBoldToken(bvUSD_);
}
function isValidPath(
IERC20Metadata underlying
) external view returns (bool) {
return _underlyingPaths[underlying].underlyingReceiver != address(0);
}
function getPath(
IERC20Metadata underlying
) external view returns (Path memory path) {
path = _underlyingPaths[underlying];
}
// amount in underlying token decimals
function deposit(
IERC20Metadata underlying,
uint256 amount
) external returns (uint256 boldAmount) {
Path memory path = _underlyingPaths[underlying];
require(path.underlyingReceiver != address(0), "Invalid path");
// pull underlying
SafeERC20.safeTransferFrom(
underlying,
msg.sender,
path.underlyingReceiver,
amount
);
// scale to 18 decimals
boldAmount = amount * 10 ** (18 - path.underlyingDecimals);
// mint bvUSD
bvUSD.mint(msg.sender, boldAmount);
}
function withdraw(
IERC20Metadata underlying,
uint256 amount,
address receiver
) external returns (uint256 underlyingOut) {
Path memory path = _underlyingPaths[underlying];
require(path.underlyingReceiver != address(0), "Invalid path");
// burn bvUSD
bvUSD.burn(msg.sender, amount);
// scale amount
uint256 withdrawalAmount = amount /
(10 ** (18 - path.underlyingDecimals));
// scale amount and subtract fee
underlyingOut =
withdrawalAmount -
((withdrawalAmount * path.withdrawalFee) / MAX_FEE);
// transfer underlyings
SafeERC20.safeTransferFrom(
underlying,
path.underlyingReceiver,
receiver,
underlyingOut
);
}
function deletePaths(
IERC20Metadata[] memory underlyings
) external onlyOwner {
for (uint i = 0; i < underlyings.length; i++) {
delete _underlyingPaths[underlyings[i]];
emit DeletedPath(underlyings[i]);
}
}
function setPaths(
IERC20Metadata[] memory underlyings,
Path[] memory paths
) external onlyOwner {
_setPaths(underlyings, paths);
}
function _setPaths(
IERC20Metadata[] memory underlyings,
Path[] memory paths
) internal {
uint256 length = underlyings.length;
require(length == paths.length, "Invalid length");
for (uint i = 0; i < length; i++) {
Path memory path = paths[i];
require(path.withdrawalFee <= MAX_FEE, "Invalid fee");
require(path.underlyingReceiver != address(0), "Invalid receiver");
IERC20Metadata underlying = underlyings[i];
path.underlyingDecimals = underlying.decimals();
require(
path.underlyingDecimals <= 18,
"Max 18 underlying decimals"
);
_underlyingPaths[underlying] = path;
emit NewPath(underlying);
}
}
}// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25
pragma solidity 0.8.24;
import "../Interfaces/IOwned.sol";
// https://docs.synthetix.io/contracts/source/contracts/owned
contract Owned is IOwned {
address public override owner;
address public override nominatedOwner;
event OwnerNominated(address newOwner);
event OwnerChanged(address oldOwner, address newOwner);
constructor(address _owner) {
require(_owner != address(0), "Owned/owner-zero");
owner = _owner;
emit OwnerChanged(address(0), _owner);
}
function nominateNewOwner(address _owner) external virtual override onlyOwner {
nominatedOwner = _owner;
emit OwnerNominated(_owner);
}
function acceptOwnership() external virtual override {
require(msg.sender == nominatedOwner, "Owned/not-nominated");
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
modifier onlyOwner() {
_onlyOwner();
_;
}
function _onlyOwner() private view {
require(msg.sender == owner, "Owned/not-owner");
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol";
import "openzeppelin-contracts/contracts/interfaces/IERC5267.sol";
import "./IOwned.sol";
interface IBoldToken is IERC20Metadata, IERC20Permit, IOwned, IERC5267 {
function mint(address _account, uint256 _amount) external;
function burn(address _account, uint256 _amount) external;
function sendToPool(address _sender, address poolAddress, uint256 _amount) external;
function returnFromPool(address poolAddress, address user, uint256 _amount) external;
function setCollateralRegistry(address _collateralRegistryAddress) external;
function setMinter(address minter, bool isMinter) external;
function setBurner(address burner, bool isBurner) external;
function setStabilityPool(address stabilityPool, bool isStabilityPool) external;
function isMinter(address minter) external view returns (bool);
function isBurner(address burner) external view returns (bool);
function isStabilityPool(address stabilityPool) external view returns (bool);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.5.0;
interface IERC7540Operator {
/**
* @dev The event emitted when an operator is set.
*
* @param controller The address of the controller.
* @param operator The address of the operator.
* @param approved The approval status.
*/
event OperatorSet(address indexed controller, address indexed operator, bool approved);
/**
* @dev Sets or removes an operator for the caller.
*
* @param operator The address of the operator.
* @param approved The approval status.
* @return Whether the call was executed successfully or not
*/
function setOperator(address operator, bool approved) external returns (bool);
/**
* @dev Returns `true` if the `operator` is approved as an operator for an `controller`.
*
* @param controller The address of the controller.
* @param operator The address of the operator.
* @return status The approval status
*/
function isOperator(address controller, address operator) external view returns (bool status);
}
interface IERC7540Deposit {
event DepositRequest(
address indexed controller, address indexed owner, uint256 indexed requestId, address sender, uint256 assets
);
/**
* @dev Transfers assets from sender into the Vault and submits a Request for asynchronous deposit.
*
* - MUST support ERC-20 approve / transferFrom on asset as a deposit Request flow.
* - MUST revert if all of assets cannot be requested for deposit.
* - owner MUST be msg.sender unless some unspecified explicit approval is given by the caller,
* approval of ERC-20 tokens from owner to sender is NOT enough.
*
* @param assets the amount of deposit assets to transfer from owner
* @param controller the controller of the request who will be able to operate the request
* @param owner the source of the deposit assets
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault's underlying asset token.
*/
function requestDeposit(uint256 assets, address controller, address owner) external returns (uint256 requestId);
/**
* @dev Returns the amount of requested assets in Pending state.
*
* - MUST NOT include any assets in Claimable state for deposit or mint.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
*/
function pendingDepositRequest(uint256 requestId, address controller)
external
view
returns (uint256 pendingAssets);
/**
* @dev Returns the amount of requested assets in Claimable state for the controller to deposit or mint.
*
* - MUST NOT include any assets in Pending state.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
*/
function claimableDepositRequest(uint256 requestId, address controller)
external
view
returns (uint256 claimableAssets);
/**
* @dev Mints shares Vault shares to receiver by claiming the Request of the controller.
*
* - MUST emit the Deposit event.
* - controller MUST equal msg.sender unless the controller has approved the msg.sender as an operator.
*/
function deposit(uint256 assets, address receiver, address controller) external returns (uint256 shares);
/**
* @dev Mints exactly shares Vault shares to receiver by claiming the Request of the controller.
*
* - MUST emit the Deposit event.
* - controller MUST equal msg.sender unless the controller has approved the msg.sender as an operator.
*/
function mint(uint256 shares, address receiver, address controller) external returns (uint256 assets);
}
interface IERC7540Redeem {
event RedeemRequest(
address indexed controller, address indexed owner, uint256 indexed requestId, address sender, uint256 assets
);
/**
* @dev Assumes control of shares from sender into the Vault and submits a Request for asynchronous redeem.
*
* - MUST support a redeem Request flow where the control of shares is taken from sender directly
* where msg.sender has ERC-20 approval over the shares of owner.
* - MUST revert if all of shares cannot be requested for redeem.
*
* @param shares the amount of shares to be redeemed to transfer from owner
* @param controller the controller of the request who will be able to operate the request
* @param owner the source of the shares to be redeemed
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault's share token.
*/
function requestRedeem(uint256 shares, address controller, address owner) external returns (uint256 requestId);
/**
* @dev Returns the amount of requested shares in Pending state.
*
* - MUST NOT include any shares in Claimable state for redeem or withdraw.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
*/
function pendingRedeemRequest(uint256 requestId, address controller)
external
view
returns (uint256 pendingShares);
/**
* @dev Returns the amount of requested shares in Claimable state for the controller to redeem or withdraw.
*
* - MUST NOT include any shares in Pending state for redeem or withdraw.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
*/
function claimableRedeemRequest(uint256 requestId, address controller)
external
view
returns (uint256 claimableShares);
/**
* @notice Fulfills a redeem request of the controller to allow the controller to withdraw their assets
* @param shares The amount of shares to redeem
* @param controller The controller to redeem for
* @return assets The amount of assets claimable by the controller
*/
function fulfillRedeem(
uint256 shares,
address controller
) external returns (uint256);
/**
* @notice Cancels a redeem request of the controller
* @param controller The controller to cancel the redeem request of
* @dev This will transfer the pending shares back to the receiver
*/
function cancelRedeemRequest(
address controller
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOwned {
function owner() external view returns (address);
function nominatedOwner() external view returns (address);
function nominateNewOwner(address owner) external;
function acceptOwnership() external;
}{
"evmVersion": "cancun",
"libraries": {},
"metadata": {
"appendCBOR": true,
"bytecodeHash": "ipfs",
"useLiteralContent": false
},
"optimizer": {
"enabled": true,
"runs": 1
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": [
"openzeppelin/=lib/V2-gov/lib/openzeppelin-contracts/",
"@chimera/=lib/V2-gov/lib/chimera/src/",
"@openzeppelin/contracts/=lib/V2-gov/lib/openzeppelin-contracts/contracts/",
"Solady/=lib/Solady/src/",
"V2-gov/=lib/V2-gov/",
"chimera/=lib/V2-gov/lib/chimera/src/",
"ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"v4-core/=lib/V2-gov/lib/v4-core/"
],
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract BoldConverter","name":"boldConverter","type":"address"},{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"asset","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60c060405234801561000f575f80fd5b5060405161090b38038061090b83398101604081905261002e9161017d565b6001600160a01b0381166100785760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a59081d985d5b1d609a1b604482015260640160405180910390fd5b6001600160a01b03808316608081905290821660a052604080516323d507ad60e21b81529051638f541eb4916004808201926020929091908290030181865afa1580156100c7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100eb91906101b5565b60a05160405163095ea7b360e01b81526001600160a01b0391821660048201525f19602482015291169063095ea7b3906044016020604051808303815f875af115801561013a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061015e91906101d7565b5050506101f6565b6001600160a01b038116811461017a575f80fd5b50565b5f806040838503121561018e575f80fd5b825161019981610166565b60208401519092506101aa81610166565b809150509250929050565b5f602082840312156101c5575f80fd5b81516101d081610166565b9392505050565b5f602082840312156101e7575f80fd5b815180151581146101d0575f80fd5b60805160a0516106e76102245f395f61021701525f8181607301528181610143015261018101526106e75ff3fe608060405234801561000f575f80fd5b5060043610610029575f3560e01c806347e7ef241461002d575b5f80fd5b61004061003b366004610592565b610052565b60405190815260200160405180910390f35b604051634886be9f60e01b81526001600160a01b0383811660048301525f917f000000000000000000000000000000000000000000000000000000000000000090911690634886be9f90602401602060405180830381865afa1580156100ba573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100de91906105c7565b61011f5760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a5908185cdcd95d609a1b60448201526064015b60405180910390fd5b6101346001600160a01b038416333085610291565b6101686001600160a01b0384167f000000000000000000000000000000000000000000000000000000000000000084610302565b6040516311f9fbc960e21b81525f906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906347e7ef24906101b890879087906004016105ed565b6020604051808303815f875af11580156101d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101f89190610606565b604051636e553f6560e01b8152600481018290523360248201529091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690636e553f65906044016020604051808303815f875af1158015610265573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102899190610606565b949350505050565b6040516001600160a01b03808516602483015283166044820152606481018290526102fc9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261039d565b50505050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa15801561034f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103739190610606565b90506102fc8463095ea7b360e01b8561038c868661061d565b6040516024016102c59291906105ed565b5f6103f1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166104759092919063ffffffff16565b905080515f148061041157508080602001905181019061041191906105c7565b6104705760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610116565b505050565b606061028984845f85855f80866001600160a01b0316858760405161049a9190610664565b5f6040518083038185875af1925050503d805f81146104d4576040519150601f19603f3d011682016040523d82523d5f602084013e6104d9565b606091505b50915091506104ea878383876104f5565b979650505050505050565b606083156105635782515f0361055c576001600160a01b0385163b61055c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610116565b5081610289565b61028983838151156105785781518083602001fd5b8060405162461bcd60e51b8152600401610116919061067f565b5f80604083850312156105a3575f80fd5b82356001600160a01b03811681146105b9575f80fd5b946020939093013593505050565b5f602082840312156105d7575f80fd5b815180151581146105e6575f80fd5b9392505050565b6001600160a01b03929092168252602082015260400190565b5f60208284031215610616575f80fd5b5051919050565b8082018082111561063c57634e487b7160e01b5f52601160045260245ffd5b92915050565b5f5b8381101561065c578181015183820152602001610644565b50505f910152565b5f8251610675818460208701610642565b9190910192915050565b602081525f825180602084015261069d816040850160208701610642565b601f01601f1916919091016040019291505056fea2646970667358221220c06c2b6ed55b227061d23b44fa4823d39afe2b4efd16416ffb20aad29f18315b64736f6c63430008180033000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5300000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b
Deployed Bytecode
0x608060405234801561000f575f80fd5b5060043610610029575f3560e01c806347e7ef241461002d575b5f80fd5b61004061003b366004610592565b610052565b60405190815260200160405180910390f35b604051634886be9f60e01b81526001600160a01b0383811660048301525f917f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5390911690634886be9f90602401602060405180830381865afa1580156100ba573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100de91906105c7565b61011f5760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a5908185cdcd95d609a1b60448201526064015b60405180910390fd5b6101346001600160a01b038416333085610291565b6101686001600160a01b0384167f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5384610302565b6040516311f9fbc960e21b81525f906001600160a01b037f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5316906347e7ef24906101b890879087906004016105ed565b6020604051808303815f875af11580156101d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101f89190610606565b604051636e553f6560e01b8152600481018290523360248201529091507f00000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b6001600160a01b031690636e553f65906044016020604051808303815f875af1158015610265573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102899190610606565b949350505050565b6040516001600160a01b03808516602483015283166044820152606481018290526102fc9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261039d565b50505050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa15801561034f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103739190610606565b90506102fc8463095ea7b360e01b8561038c868661061d565b6040516024016102c59291906105ed565b5f6103f1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166104759092919063ffffffff16565b905080515f148061041157508080602001905181019061041191906105c7565b6104705760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610116565b505050565b606061028984845f85855f80866001600160a01b0316858760405161049a9190610664565b5f6040518083038185875af1925050503d805f81146104d4576040519150601f19603f3d011682016040523d82523d5f602084013e6104d9565b606091505b50915091506104ea878383876104f5565b979650505050505050565b606083156105635782515f0361055c576001600160a01b0385163b61055c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610116565b5081610289565b61028983838151156105785781518083602001fd5b8060405162461bcd60e51b8152600401610116919061067f565b5f80604083850312156105a3575f80fd5b82356001600160a01b03811681146105b9575f80fd5b946020939093013593505050565b5f602082840312156105d7575f80fd5b815180151581146105e6575f80fd5b9392505050565b6001600160a01b03929092168252602082015260400190565b5f60208284031215610616575f80fd5b5051919050565b8082018082111561063c57634e487b7160e01b5f52601160045260245ffd5b92915050565b5f5b8381101561065c578181015183820152602001610644565b50505f910152565b5f8251610675818460208701610642565b9190910192915050565b602081525f825180602084015261069d816040850160208701610642565b601f01601f1916919091016040019291505056fea2646970667358221220c06c2b6ed55b227061d23b44fa4823d39afe2b4efd16416ffb20aad29f18315b64736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5300000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b
-----Decoded View---------------
Arg [0] : boldConverter (address): 0xD308D6189510315b0F92F214102F1b684Fa11d53
Arg [1] : vault (address): 0x24E2aE2f4c59b8b7a03772142d439fDF13AAF15b
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d53
Arg [1] : 00000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.