ETH Price: $2,929.77 (-3.28%)

Contract

0x7256EFDadF266C0ed10ebb77C47790eC5E961AAC

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

Please try again later

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PriceFeedCurvePTAssetBounded

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {BaseFeedCurvePTAssetBounded} from "src/spectra-oracles/chainlinkFeeds/stableswap-ng/BaseFeedCurvePTAssetBounded.sol";

/**
 * @title PriceFeedCurvePTAssetBounded contract
 * @author Spectra Finance
 * @notice Price feed for the PT in asset upper bounded by the redemption value and lower bounded by the ZCB model

 */

contract PriceFeedCurvePTAssetBounded is BaseFeedCurvePTAssetBounded {
    string public constant description =
        "IBT/PT Curve Pool Oracle: TWAP PT price in asset. Lower bounded by the ZCB model according to _impliedRateand upper bounded by the redemption value";

    constructor() BaseFeedCurvePTAssetBounded() {}

    function initialize(address _pt, address _pool, uint256 _impliedRate) external initializer {
        super.__BaseFeedCurvePTAssetBounded_init(_pt, _pool, _impliedRate);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 4 of 22 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 5 of 22 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

File 6 of 22 : IERC3156FlashBorrower.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC3156 FlashBorrower, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashBorrower {
    /**
     * @dev Receive a flash loan.
     * @param initiator The initiator of the loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param fee The additional amount of tokens to repay.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
     */
    function onFlashLoan(
        address initiator,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata data
    ) external returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)

pragma solidity ^0.8.20;

import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";

/**
 * @dev Interface of the ERC3156 FlashLender, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashLender {
    /**
     * @dev The amount of currency available to be lended.
     * @param token The loan currency.
     * @return The amount of `token` that can be borrowed.
     */
    function maxFlashLoan(address token) external view returns (uint256);

    /**
     * @dev The fee to be charged for a given loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @return The amount of `token` to be charged for the loan, on top of the returned principal.
     */
    function flashFee(address token, uint256 amount) external view returns (uint256);

    /**
     * @dev Initiate a flash loan.
     * @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     */
    function flashLoan(
        IERC3156FlashBorrower receiver,
        address token,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

/// @dev Interface of Chainlink v3 aggregator, as defined in
// https://github.com/smartcontractkit/chainlink/blob/develop/contracts/src/v0.8/shared/interfaces/AggregatorV3Interface.sol
// solhint-disable-next-line interface-starts-with-i
interface AggregatorV3Interface {
    function decimals() external view returns (uint8);

    function description() external view returns (string memory);

    function version() external view returns (uint256);

    function getRoundData(
        uint80 _roundId
    )
        external
        view
        returns (
            uint80 roundId,
            int256 answer,
            uint256 startedAt,
            uint256 updatedAt,
            uint80 answeredInRound
        );

    function latestRoundData()
        external
        view
        returns (
            uint80 roundId,
            int256 answer,
            uint256 startedAt,
            uint256 updatedAt,
            uint80 answeredInRound
        );
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface for Curve TwoCrypto-NG pool
 */
interface ICurveNGPool is IERC20Metadata {
    function coins(uint256 index) external view returns (address);

    function balances(uint256 index) external view returns (uint256);

    function A() external view returns (uint256);

    function gamma() external view returns (uint256);

    function D() external view returns (uint256);

    function token() external view returns (address);

    function price_scale() external view returns (uint256);

    function price_oracle() external view returns (uint256);

    function future_A_gamma_time() external view returns (uint256);

    function future_A_gamma() external view returns (uint256);

    function initial_A_gamma_time() external view returns (uint256);

    function initial_A_gamma() external view returns (uint256);

    function fee_gamma() external view returns (uint256);

    function mid_fee() external view returns (uint256);

    function out_fee() external view returns (uint256);

    function allowed_extra_profit() external view returns (uint256);

    function adjustment_step() external view returns (uint256);

    function admin_fee() external view returns (uint256);

    function ma_time() external view returns (uint256);

    function get_virtual_price() external view returns (uint256);

    function fee() external view returns (uint256);

    function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);

    function get_dx(uint256 i, uint256 j, uint256 dy) external view returns (uint256);

    function last_prices() external view returns (uint256);

    function calc_token_amount(
        uint256[2] calldata amounts,
        bool deposit
    ) external view returns (uint256);

    function calc_withdraw_one_coin(
        uint256 _token_amount,
        uint256 i
    ) external view returns (uint256);

    function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy) external returns (uint256);

    function exchange(
        uint256 i,
        uint256 j,
        uint256 dx,
        uint256 min_dy,
        address receiver
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount,
        address receiver
    ) external returns (uint256);

    function remove_liquidity(uint256 amount, uint256[2] calldata min_amounts) external;

    function remove_liquidity(
        uint256 amount,
        uint256[2] calldata min_amounts,
        address receiver
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount,
        address receiver
    ) external;
}

File 15 of 22 : IPrincipalToken.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

import "openzeppelin-contracts/interfaces/IERC20.sol";
import "openzeppelin-contracts/interfaces/IERC20Metadata.sol";
import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol";

interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender {
    /* ERRORS
     *****************************************************************************************************************/

    error InvalidDecimals();
    error BeaconNotSet();
    error PTExpired();
    error PTNotExpired();
    error RateError();
    error AddressError();
    error UnauthorizedCaller();
    error RatesAtExpiryAlreadyStored();
    error ERC5143SlippageProtectionFailed();
    error InsufficientBalance();
    error FlashLoanExceedsMaxAmount();
    error FlashLoanCallbackFailed();
    error NoRewardsProxy();
    error ClaimRewardsFailed();

    /* Functions
     *****************************************************************************************************************/

    function initialize(address _ibt, uint256 _duration, address initialAuthority) external;

    /**
     * @notice Toggle Pause
     * @dev Should only be called in extraordinary situations by the admin of the contract
     */
    function pause() external;

    /**
     * @notice Toggle UnPause
     * @dev Should only be called in extraordinary situations by the admin of the contract
     */
    function unPause() external;

    /**
     * @notice Deposits amount of assets in the PT vault
     * @param assets The amount of assets being deposited
     * @param receiver The receiver address of the shares
     * @return shares The amount of shares minted (same amount for PT & yt)
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @notice Deposits amount of assets in the PT vault
     * @param assets The amount of assets being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver the receiver address of the YTs
     * @return shares The amount of shares minted (same amount for PT & yt)
     */
    function deposit(
        uint256 assets,
        address ptReceiver,
        address ytReceiver
    ) external returns (uint256 shares);

    /**
     * @notice Deposits amount of assets with a lower bound on shares received
     * @param assets The amount of assets being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver The receiver address of the YTs
     * @param minShares The minimum allowed shares from this deposit
     * @return shares The amount of shares actually minted to the receiver
     */
    function deposit(
        uint256 assets,
        address ptReceiver,
        address ytReceiver,
        uint256 minShares
    ) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param receiver The receiver address of the shares
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver the receiver address of the YTs
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(
        uint256 ibts,
        address ptReceiver,
        address ytReceiver
    ) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver The receiver address of the YTs
     * @param minShares The minimum allowed shares from this deposit
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(
        uint256 ibts,
        address ptReceiver,
        address ytReceiver,
        uint256 minShares
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends assets to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares
     * @return assets The actual amount of assets received for burning the shares
     */
    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) external returns (uint256 assets);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends assets to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares
     * @param minAssets The minimum assets that should be returned to user
     * @return assets The actual amount of assets received for burning the shares
     */
    function redeem(
        uint256 shares,
        address receiver,
        address owner,
        uint256 minAssets
    ) external returns (uint256 assets);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends IBTs to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares
     * @return ibts The actual amount of IBT received for burning the shares
     */
    function redeemForIBT(
        uint256 shares,
        address receiver,
        address owner
    ) external returns (uint256 ibts);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends IBTs to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares
     * @param minIbts The minimum IBTs that should be returned to user
     * @return ibts The actual amount of IBT received for burning the shares
     */
    function redeemForIBT(
        uint256 shares,
        address receiver,
        address owner,
        uint256 minIbts
    ) external returns (uint256 ibts);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
     * @param assets The amount of assets to be received
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares (PTs and YTs)
     * @return shares The actual amount of shares burnt for receiving the assets
     */
    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
     * @param assets The amount of assets to be received
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares (PTs and YTs)
     * @param maxShares The maximum shares allowed to be burnt
     * @return shares The actual amount of shares burnt for receiving the assets
     */
    function withdraw(
        uint256 assets,
        address receiver,
        address owner,
        uint256 maxShares
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
     * @param ibts The amount of IBT to be received
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares (PTs and YTs)
     * @return shares The actual amount of shares burnt for receiving the IBTs
     */
    function withdrawIBT(
        uint256 ibts,
        address receiver,
        address owner
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
     * @param ibts The amount of IBT to be received
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares (PTs and YTs)
     * @param maxShares The maximum shares allowed to be burnt
     * @return shares The actual amount of shares burnt for receiving the IBTs
     */
    function withdrawIBT(
        uint256 ibts,
        address receiver,
        address owner,
        uint256 maxShares
    ) external returns (uint256 shares);

    /**
     * @notice Updates _user's yield since last update
     * @param _user The user whose yield will be updated
     * @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield)
     */
    function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT);

    /**
     * @notice Claims caller's unclaimed yield in asset
     * @param _receiver The receiver of yield
     * @param _minAssets The minimum amount of assets that should be received
     * @return yieldInAsset The amount of yield claimed in asset
     */
    function claimYield(
        address _receiver,
        uint256 _minAssets
    ) external returns (uint256 yieldInAsset);

    /**
     * @notice Claims caller's unclaimed yield in IBT
     * @param _receiver The receiver of yield
     * @param _minIBT The minimum amount of IBT that should be received
     * @return yieldInIBT The amount of yield claimed in IBT
     */
    function claimYieldInIBT(
        address _receiver,
        uint256 _minIBT
    ) external returns (uint256 yieldInIBT);

    /**
     * @notice Claims the collected ibt fees and redeems them to the fee collector
     * @return ibts The amount of IBTs sent to the fee collector
     */
    function claimFees() external returns (uint256 ibts);

    /**
     * @notice Updates yield of both sender and receiver of YTs
     * @param _from the sender of YTs
     * @param _to the receiver of YTs
     */
    function beforeYtTransfer(address _from, address _to) external;

    /**
     * Call the claimRewards function of the rewards contract
     * @param data The optional data to be passed to the rewards contract
     */
    function claimRewards(bytes memory data) external;

    /* SETTERS
     *****************************************************************************************************************/

    /**
     * @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry
     */
    function storeRatesAtExpiry() external;

    /** Set a new Rewards Proxy
     * @param _rewardsProxy The address of the new reward proxy
     */
    function setRewardsProxy(address _rewardsProxy) external;

    /* GETTERS
     *****************************************************************************************************************/

    /**
     * @notice Returns the amount of shares minted for the theorical deposited amount of assets
     * @param assets The amount of assets deposited
     * @return The amount of shares minted
     */
    function previewDeposit(uint256 assets) external view returns (uint256);

    /**
     * @notice Returns the amount of shares minted for the theorical deposited amount of IBT
     * @param ibts The amount of IBT deposited
     * @return The amount of shares minted
     */
    function previewDepositIBT(uint256 ibts) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     * @param receiver The receiver of the shares
     * @return The maximum amount of assets that can be deposited
     */
    function maxDeposit(address receiver) external view returns (uint256);

    /**
     * @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying
     * @param assets The amount of assets to receive
     * @return The amount of shares burnt
     */
    function previewWithdraw(uint256 assets) external view returns (uint256);

    /**
     * @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT
     * @param ibts The amount of IBT to receive
     * @return The amount of shares burnt
     */
    function previewWithdrawIBT(uint256 ibts) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     * @param owner The owner of the Vault shares
     * @return The maximum amount of assets that can be withdrawn
     */
    function maxWithdraw(address owner) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     * @param owner The owner of the Vault shares
     * @return The maximum amount of IBT that can be withdrawn
     */
    function maxWithdrawIBT(address owner) external view returns (uint256);

    /**
     * @notice Returns the amount of assets received for the theorical amount of burnt shares
     * @param shares The amount of shares to burn
     * @return The amount of assets received
     */
    function previewRedeem(uint256 shares) external view returns (uint256);

    /**
     * @notice Returns the amount of IBT received for the theorical amount of burnt shares
     * @param shares The amount of shares to burn
     * @return The amount of IBT received
     */
    function previewRedeemForIBT(uint256 shares) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of Vault shares that can be redeemed by the owner
     * @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT
     * needs to be burnt, while after expiry only PTs are burnt.
     * @param owner The owner of the shares
     * @return The maximum amount of shares that can be redeemed
     */
    function maxRedeem(address owner) external view returns (uint256);

    /**
     * Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT.
     */
    function totalAssets() external view returns (uint256);

    /**
     * @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method.
     * @param underlyingAmount The amount of underlying (or assets) to convert
     * @return The resulting amount of principal (or shares)
     */
    function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256);

    /**
     * @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method.
     * @param principalAmount The amount of principal (or shares) to convert
     * @return The resulting amount of underlying (or assets)
     */
    function convertToUnderlying(uint256 principalAmount) external view returns (uint256);

    /**
     * @notice Returns whether or not the contract is paused.
     * @return true if the contract is paused, and false otherwise
     */
    function paused() external view returns (bool);

    /**
     * @notice Returns the unix timestamp (uint256) at which the PT contract expires
     * @return The unix timestamp (uint256) when PTs become redeemable
     */
    function maturity() external view returns (uint256);

    /**
     * @notice Returns the duration of the PT contract
     * @return The duration (in s) to expiry/maturity of the PT contract
     */
    function getDuration() external view returns (uint256);

    /**
     * @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method.
     * @return The address of the underlying token (or asset)
     */
    function underlying() external view returns (address);

    /**
     * @notice Returns the IBT address of the PT contract
     * @return ibt The address of the IBT
     */
    function getIBT() external view returns (address ibt);

    /**
     * @notice Returns the yt address of the PT contract
     * @return yt The address of the yt
     */
    function getYT() external view returns (address yt);

    /**
     * @notice Returns the current ibtRate
     * @return The current ibtRate
     */
    function getIBTRate() external view returns (uint256);

    /**
     * @notice Returns the current ptRate
     * @return The current ptRate
     */
    function getPTRate() external view returns (uint256);

    /**
     * @notice Returns 1 unit of IBT
     * @return The IBT unit
     */
    function getIBTUnit() external view returns (uint256);

    /**
     * @notice Get the unclaimed fees in IBT
     * @return The unclaimed fees in IBT
     */
    function getUnclaimedFeesInIBT() external view returns (uint256);

    /**
     * @notice Get the total collected fees in IBT (claimed and unclaimed)
     * @return The total fees in IBT
     */
    function getTotalFeesInIBT() external view returns (uint256);

    /**
     * @notice Get the tokenization fee of the PT
     * @return The tokenization fee
     */
    function getTokenizationFee() external view returns (uint256);

    /**
     * @notice Get the current IBT yield of the user
     * @param _user The address of the user to get the current yield from
     * @return The yield of the user in IBT
     */
    function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256);
}

File 16 of 22 : IStableSwapNG.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.4;

interface IStableSwapNG {
    function A() external view returns (uint256);
    function A_precise() external view returns (uint256);
    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function D_ma_time() external view returns (uint256);
    function D_oracle() external view returns (uint256);
    function N_COINS() external view returns (uint256);
    function add_liquidity(
        uint256[] memory _amounts,
        uint256 _min_mint_amount,
        address _receiver
    ) external returns (uint256);
    function admin_balances(uint256 arg0) external view returns (uint256);
    function admin_fee() external view returns (uint256);
    function allowance(address arg0, address arg1) external view returns (uint256);
    function approve(address _spender, uint256 _value) external returns (bool);
    function balanceOf(address arg0) external view returns (uint256);
    function balances(uint256 i) external view returns (uint256);
    function calc_token_amount(
        uint256[] memory _amounts,
        bool _is_deposit
    ) external view returns (uint256);
    function calc_withdraw_one_coin(uint256 _burn_amount, int128 i) external view returns (uint256);
    function coins(uint256 arg0) external view returns (address);
    function decimals() external view returns (uint8);
    function dynamic_fee(int128 i, int128 j) external view returns (uint256);
    function ema_price(uint256 i) external view returns (uint256);
    function exchange(int128 i, int128 j, uint256 _dx, uint256 _min_dy) external returns (uint256);
    function exchange(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy,
        address _receiver
    ) external returns (uint256);
    function exchange_received(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy
    ) external returns (uint256);
    function exchange_received(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy,
        address _receiver
    ) external returns (uint256);
    function fee() external view returns (uint256);
    function future_A() external view returns (uint256);
    function future_A_time() external view returns (uint256);
    function get_balances() external view returns (uint256[] memory);
    function get_dx(int128 i, int128 j, uint256 dy) external view returns (uint256);
    function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256);
    function get_p(uint256 i) external view returns (uint256);
    function get_virtual_price() external view returns (uint256);
    function initial_A() external view returns (uint256);
    function initial_A_time() external view returns (uint256);
    function last_price(uint256 i) external view returns (uint256);
    function ma_exp_time() external view returns (uint256);
    function ma_last_time() external view returns (uint256);
    function name() external view returns (string memory);
    function nonces(address arg0) external view returns (uint256);
    function offpeg_fee_multiplier() external view returns (uint256);
    function permit(
        address _owner,
        address _spender,
        uint256 _value,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external returns (bool);
    function price_oracle(uint256 i) external view returns (uint256);
    function ramp_A(uint256 _future_A, uint256 _future_time) external;
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts
    ) external returns (uint256[] memory);
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts,
        address _receiver
    ) external returns (uint256[] memory);
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts,
        address _receiver,
        bool _claim_admin_fees
    ) external returns (uint256[] memory);
    function remove_liquidity_imbalance(
        uint256[] memory _amounts,
        uint256 _max_burn_amount
    ) external returns (uint256);
    function remove_liquidity_imbalance(
        uint256[] memory _amounts,
        uint256 _max_burn_amount,
        address _receiver
    ) external returns (uint256);
    function remove_liquidity_one_coin(
        uint256 _burn_amount,
        int128 i,
        uint256 _min_received
    ) external returns (uint256);
    function remove_liquidity_one_coin(
        uint256 _burn_amount,
        int128 i,
        uint256 _min_received,
        address _receiver
    ) external returns (uint256);
    function salt() external view returns (bytes32);
    function set_ma_exp_time(uint256 _ma_exp_time, uint256 _D_ma_time) external;
    function set_new_fee(uint256 _new_fee, uint256 _new_offpeg_fee_multiplier) external;
    function stop_ramp_A() external;
    function stored_rates() external view returns (uint256[] memory);
    function symbol() external view returns (string memory);
    function totalSupply() external view returns (uint256);
    function transfer(address _to, uint256 _value) external returns (bool);
    function transferFrom(address _from, address _to, uint256 _value) external returns (bool);
    function version() external view returns (string memory);
    function withdraw_admin_fees() external;
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {Math} from "openzeppelin-math/Math.sol";
import {IERC20} from "openzeppelin-contracts/interfaces/IERC20.sol";
import {IERC4626} from "openzeppelin-contracts/interfaces/IERC4626.sol";
import {ICurveNGPool} from "../interfaces/ICurveNGPool.sol";
import {IStableSwapNG} from "../interfaces/IStableSwapNG.sol";
import {IPrincipalToken} from "../interfaces/IPrincipalToken.sol";
import {PTPricingLib} from "./PTPricingLib.sol";

/**
 * @dev Utilities for computing prices of Spectra PTs, YTs and LP tokens in Curve CryptoSwap pools.
 */

library CurveOracleLib {
    using Math for uint256;

    error PoolLiquidityError();

    uint256 public constant CURVE_UNIT = 1e18;

    /**
     * This function returns the TWAP rate PT/Asset on a Curve StableSwap NG pool, but takes into account the current rate of IBT
     * This accounts for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param pool Address of the Curve Pool to get rate from
     * @return PT/Underlying exchange rate
     */
    function getPTToAssetRateSNG(address pool) public view returns (uint256) {
        uint256 ptToIBTRate = getPTToIBTRateSNG(pool);
        IERC4626 ibt = IERC4626(ICurveNGPool(pool).coins(0));
        return ibt.previewRedeem(ptToIBTRate);
    }

    /**
     * @dev This function returns the TWAP rate PT/IBT on a Curve StableSwap NG pool
     * This accounts for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
     * @param pool Address of the Curve Pool to get rate from
     * @return PT/IBT exchange rate
     */
    function getPTToIBTRateSNG(address pool) public view returns (uint256) {
        IPrincipalToken pt = IPrincipalToken(ICurveNGPool(pool).coins(1));
        uint256 maturity = pt.maturity();
        if (maturity <= block.timestamp) {
            return pt.previewRedeemForIBT(pt.getIBTUnit());
        } else {
            uint256[] memory storedRates = IStableSwapNG(pool).stored_rates();
            return
                pt.getIBTUnit().mulDiv(storedRates[1], storedRates[0]).mulDiv(
                    IStableSwapNG(pool).price_oracle(0),
                    CURVE_UNIT
                );
        }
    }

    /**
     * This function returns the TWAP rate YT/Asset on a Curve StableSwap NG pool
     * @param pool Curve Pool to get rate from
     * @return YT/Underlying exchange rate
     */
    function getYTToAssetRateSNG(address pool) internal view returns (uint256) {
        IPrincipalToken pt = IPrincipalToken(IStableSwapNG(pool).coins(1));
        uint256 ptToAssetRateCore = pt.previewRedeem(pt.getIBTUnit());
        uint256 ptToAssetRateOracle = getPTToAssetRateSNG(pool);
        if (ptToAssetRateOracle > ptToAssetRateCore) {
            revert PoolLiquidityError();
        }
        return (ptToAssetRateCore - ptToAssetRateOracle);
    }

    /**
     * @dev This function returns the TWAP rate YT/IBT on a Curve StableSwap NG pool
     * @param pool Curve Pool to get rate from
     * @return YT/IBT exchange rate
     */
    function getYTToIBTRateSNG(address pool) internal view returns (uint256) {
        IPrincipalToken pt = IPrincipalToken(IStableSwapNG(pool).coins(1));
        uint256 ptToIBTRateCore = pt.previewRedeemForIBT(pt.getIBTUnit());
        uint256 ptToIBTRateOracle = getPTToIBTRateSNG(pool);
        if (ptToIBTRateOracle > ptToIBTRateCore) {
            revert PoolLiquidityError();
        }
        return ptToIBTRateCore - ptToIBTRateOracle;
    }

    /**
     * This function returns the TWAP rate LP/Asset on a Curve StableSwap NG pool, and takes into account the current rate of IBT
     * @param pool Address of the Curve Pool to get rate from
     * @return LP/Underlying exchange rate
     */
    function getLPTToAssetRateSNG(address pool) internal view returns (uint256) {
        uint256 lptToIBTRate = getLPTToIBTRateSNG(pool);
        IERC4626 ibt = IERC4626(IStableSwapNG(pool).coins(0));
        return ibt.previewRedeem(lptToIBTRate);
    }

    /**
     * @dev This function returns the TWAP rate LP/IBT on a Curve StableSwap NG pool
     * @param pool Address of the Curve Pool to get rate from
     * @return LP/IBT exchange rate
     */
    function getLPTToIBTRateSNG(address pool) internal view returns (uint256) {
        IPrincipalToken pt = IPrincipalToken(IStableSwapNG(pool).coins(1));
        uint256 maturity = pt.maturity();
        uint256 balIBT = IStableSwapNG(pool).balances(0);
        uint256 balPT = IStableSwapNG(pool).balances(1);
        uint256 supplyLPT = IERC20(pool).totalSupply();
        if (maturity <= block.timestamp) {
            return
                pt.previewRedeemForIBT(balPT.mulDiv(CURVE_UNIT, supplyLPT)) +
                balIBT.mulDiv(CURVE_UNIT, supplyLPT);
        } else {
            uint256 ptToIBTRate = getPTToIBTRateSNG(pool);
            return
                ((balPT.mulDiv(ptToIBTRate, pt.getIBTUnit())) + balIBT).mulDiv(
                    CURVE_UNIT,
                    supplyLPT
                );
        }
    }

    /**
     * @notice Computes the price of the Principal Token in asset upper bounded by the redemption value and lower bounded by the ZCB model
     * @param pool The address of the Curve Pool to get rate from
     * @param impliedRate The implied rate expressed in 18 decimals. For example 30% is expressed as 3e17
     * @return The price of the Principal Token in asset
     */
    function getBoundedPTPrice(address pool, uint256 impliedRate) internal view returns (uint256) {
        IPrincipalToken pt = IPrincipalToken(IStableSwapNG(pool).coins(1));
        uint256 maturity = pt.maturity();
        if (maturity <= block.timestamp) {
            return pt.previewRedeem(pt.getIBTUnit());
        }

        uint256 futurePTValue = pt.previewRedeem(pt.getIBTUnit());
        uint256 ptToAssetRate = getPTToAssetRateSNG(pool);
        uint256 ptZCB = PTPricingLib.getPTPriceZCBModel(
            pt.previewRedeem(pt.getIBTUnit()),
            impliedRate,
            block.timestamp,
            maturity
        );

        uint256 lowerBound = Math.max(ptToAssetRate, ptZCB);
        uint256 upperBound = Math.min(lowerBound, futurePTValue);

        return upperBound;
    }
}

// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) *
                    y_int256 +
                    ((ln_36_x % ONE_18) * y_int256) /
                    ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 19 of 22 : PTPricingLib.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {LogExpMath} from "./LogExpMath.sol";

/**
 * @title PTPricingLib library
 * @author Spectra Finance
 * @notice Provides miscellaneous utils for computations related to Principal Token pricing.
 */
library PTPricingLib {
    uint256 public constant UNIT = 10 ** 18;
    uint256 public constant YEAR = 365 days;

    /**
     * @notice Computes the price of the Principal Token in the ZCB model
     * @param futurePTValue The redemption value of the Principal Token
     * @param impliedRate The implied rate expressed in 18 decimals. For example 30% is expressed as 3e17
     * @param currentTimestamp The current timestamp
     * @param maturity The maturity timestamp
     */
    function getPTPriceZCBModel(
        uint256 futurePTValue,
        uint256 impliedRate,
        uint256 currentTimestamp,
        uint256 maturity
    ) internal view returns (uint256) {
        if (currentTimestamp >= maturity) {
            return futurePTValue;
        }
        uint256 timeLeft = maturity - currentTimestamp;
        int256 t = int256((timeLeft * UNIT) / YEAR);
        int256 unitInt = int256(UNIT);
        int256 base = unitInt + int256(impliedRate);
        int256 ratePerSecond = LogExpMath.ln(base);
        int256 denominator = LogExpMath.exp((ratePerSecond * t) / unitInt);
        int256 presentValue = (int256(futurePTValue) * unitInt) / denominator;
        return uint256(presentValue);
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {CurveOracleLib} from "src/libraries/CurveOracleLib.sol";
import {BaseOracleCurvePT} from "src/spectra-oracles/oracles/BaseOracleCurvePT.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Ownable} from "openzeppelin-contracts/access/Ownable.sol";

/**
 * @title BaseFeedCurvePTAssetBounded contract
 * @author Spectra Finance
 * @notice Base contract to implement the AggregatorV3Interface feed for the PT in asset upper bounded by the redemption value and lower bounded by the ZCB model
 */
abstract contract BaseFeedCurvePTAssetBounded is BaseOracleCurvePT {
    uint256 private impliedRate;
    constructor() {
        _disableInitializers();
    }

    /* INITIALIZERS
     *****************************************************************************************************************/

    /**
     * @notice Initializes the oracle
     * @param _pt The principal token address
     * @param _pool The pool address
     * @param _impliedRate The implied rate used for the linear discount model
     */
    function __BaseFeedCurvePTAssetBounded_init(
        address _pt,
        address _pool,
        uint256 _impliedRate
    ) internal onlyInitializing {
        super.__BaseOracleCurvePT_init(_pt, _pool);
        impliedRate = _impliedRate;
    }

    /* INTERNAL
     *****************************************************************************************************************/

    function _PTPrice() internal view override returns (uint256) {
        return CurveOracleLib.getBoundedPTPrice(pool, impliedRate);
    }

    function decimals() external view override returns (uint8) {
        return IERC20Metadata(asset).decimals();
    }

    /* PUBLIC FUNCTIONS
     *****************************************************************************************************************/

    /**
     * @notice Get the implied rate
     * @return The implied rate
     */
    function getImpliedRate() external view returns (uint256) {
        return impliedRate;
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {Initializable} from "openzeppelin-contracts-upgradeable/proxy/utils/Initializable.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IPrincipalToken} from "src/interfaces/IPrincipalToken.sol";
import {AggregatorV3Interface} from "src/interfaces/AggregatorV3Interface.sol";

/**
 * @title BaseOracle contract
 * @author Spectra Finance
 * @notice A base oracle implementation
 */
abstract contract BaseOracle is AggregatorV3Interface, Initializable {
    address public pool;
    address public pt;
    uint256 public maturity;
    address public asset;
    address public ibt;

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[45] private __gap;

    constructor() {
        _disableInitializers();
    }

    /**
     * @notice First function to be called after deployment
     * @param _pt The principal token address
     * @param _pool The pool address
     */
    function __BaseOracle_init(address _pt, address _pool) internal onlyInitializing {
        pool = _pool;
        pt = _pt;
        maturity = IPrincipalToken(_pt).maturity();
        asset = IPrincipalToken(_pt).underlying();
        ibt = IPrincipalToken(_pt).getIBT();
    }

    /* AggregatorV3Interface
     *****************************************************************************************************************/

    /** @dev See {AggregatorV3Interface-version}. */
    function version() external pure virtual returns (uint256) {
        return 1;
    }

    /** @dev See {AggregatorV3Interface-decimals}. */
    function decimals() external view virtual returns (uint8);

    /** @dev See {AggregatorV3Interface-getQuoteAmount}. */
    function _getQuoteAmount() internal view virtual returns (uint256);

    /** @dev See {AggregatorV3Interface-getRoundData}. */
    function getRoundData(
        uint80
    )
        external
        view
        returns (
            uint80 roundId,
            int256 answer,
            uint256 startedAt,
            uint256 updatedAt,
            uint80 answeredInRound
        )
    {
        return (0, int256(_getQuoteAmount()), 0, 0, 0);
    }

    /** @dev See {AggregatorV3Interface-latestRoundData}. */
    function latestRoundData()
        external
        view
        returns (
            uint80 roundId,
            int256 answer,
            uint256 startedAt,
            uint256 updatedAt,
            uint80 answeredInRound
        )
    {
        return (0, int256(_getQuoteAmount()), 0, 0, 0);
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import {BaseOracle} from "src/spectra-oracles/oracles/BaseOracle.sol";
import {Initializable} from "openzeppelin-contracts-upgradeable/proxy/utils/Initializable.sol";
/**
 * @title BaseOracleCurvePT contract
 * @author Spectra Finance
 * @notice A base oracle implementation for the PT
 */
abstract contract BaseOracleCurvePT is BaseOracle {
    /**
     * @notice First function to be called after deployment
     */
    constructor() {
        _disableInitializers();
    }

    /**
     * @notice Initializes the oracle
     * @param _pt The principal token address
     * @param _pool The pool address
     */
    function __BaseOracleCurvePT_init(address _pt, address _pool) internal onlyInitializing {
        super.__BaseOracle_init(_pt, _pool);
    }
    /* INTERNAL
     *****************************************************************************************************************/

    function _getQuoteAmount() internal view override returns (uint256) {
        return _PTPrice();
    }

    /**
     * @dev Depending on the pool you should use:
     * getPTToAssetRate() should be used,
     * or getPTToIBTRate() if the asset is not easily tradable with IBT
     */
    function _PTPrice() internal view virtual returns (uint256);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "shanghai",
  "remappings": [
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/"
  ],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getImpliedRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint80","name":"","type":"uint80"}],"name":"getRoundData","outputs":[{"internalType":"uint80","name":"roundId","type":"uint80"},{"internalType":"int256","name":"answer","type":"int256"},{"internalType":"uint256","name":"startedAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint80","name":"answeredInRound","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ibt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pt","type":"address"},{"internalType":"address","name":"_pool","type":"address"},{"internalType":"uint256","name":"_impliedRate","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"latestRoundData","outputs":[{"internalType":"uint80","name":"roundId","type":"uint80"},{"internalType":"int256","name":"answer","type":"int256"},{"internalType":"uint256","name":"startedAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint80","name":"answeredInRound","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maturity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]

608060405234801562000010575f80fd5b506200001b62000035565b6200002562000035565b6200002f62000035565b620000e9565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff1615620000865760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b0390811614620000e65780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b611be980620000f75f395ff3fe608060405234801561000f575f80fd5b50600436106100b1575f3560e01c80637284e4161161006e5780637284e416146101445780639a6fc8f514610159578063c185f58f146101a3578063c43f357b146101ab578063dc263022146101be578063feaf968c146101d1575f80fd5b806316f0115b146100b55780631794bb3c146100e4578063204f83f9146100f9578063313ce5671461011057806338d52e0f1461012a57806354fd4d501461013d575b5f80fd5b5f546100c7906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100f76100f2366004611854565b6101d9565b005b61010260025481565b6040519081526020016100db565b6101186102eb565b60405160ff90911681526020016100db565b6003546100c7906001600160a01b031681565b6001610102565b61014c61035b565b6040516100db9190611892565b61016c6101673660046118dd565b610377565b6040805169ffffffffffffffffffff968716815260208101959095528401929092526060830152909116608082015260a0016100db565b603254610102565b6004546100c7906001600160a01b031681565b6001546100c7906001600160a01b031681565b61016c610398565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f8115801561021e5750825b90505f8267ffffffffffffffff16600114801561023a5750303b155b905081158015610248575080155b156102665760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561029057845460ff60401b1916600160401b1785555b61029b8888886103b8565b83156102e157845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b6003546040805163313ce56760e01b815290515f926001600160a01b03169163313ce5679160048083019260209291908290030181865afa158015610332573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103569190611906565b905090565b6040518060c0016040528060938152602001611b216093913981565b5f805f805f806103856103d1565b90979096505f9550859450849350915050565b5f805f805f806103a66103d1565b90969095505f94508493508392509050565b6103c06103da565b6103ca8383610425565b6032555050565b5f61035661043b565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff1661042357604051631afcd79f60e31b815260040160405180910390fd5b565b61042d6103da565b6104378282610454565b5050565b5f8054603254610356916001600160a01b0316906105f5565b61045c6103da565b5f80546001600160a01b038084166001600160a01b0319928316179092556001805492851692909116821790556040805163204f83f960e01b8152905163204f83f9916004808201926020929091908290030181865afa1580156104c2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104e69190611926565b600281905550816001600160a01b0316636f307dc36040518163ffffffff1660e01b8152600401602060405180830381865afa158015610528573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061054c919061193d565b60035f6101000a8154816001600160a01b0302191690836001600160a01b03160217905550816001600160a01b031663c644fe946040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105ad573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d1919061193d565b600480546001600160a01b0319166001600160a01b03929092169190911790555050565b60405163c661065760e01b8152600160048201525f9081906001600160a01b0385169063c661065790602401602060405180830381865afa15801561063c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610660919061193d565b90505f816001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa15801561069f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106c39190611926565b90504281116107a157816001600160a01b0316634cdad506836001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610717573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061073b9190611926565b6040518263ffffffff1660e01b815260040161075991815260200190565b602060405180830381865afa158015610774573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107989190611926565b92505050610978565b5f826001600160a01b0316634cdad506846001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108119190611926565b6040518263ffffffff1660e01b815260040161082f91815260200190565b602060405180830381865afa15801561084a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061086e9190611926565b90505f61087a8761097e565b90505f610954856001600160a01b0316634cdad506876001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108ef9190611926565b6040518263ffffffff1660e01b815260040161090d91815260200190565b602060405180830381865afa158015610928573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061094c9190611926565b884287610a67565b90505f6109618383610b0f565b90505f61096e8286610b26565b9750505050505050505b92915050565b5f8061098983610b34565b60405163c661065760e01b81525f600482018190529192506001600160a01b0385169063c661065790602401602060405180830381865afa1580156109d0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f4919061193d565b60405163266d6a8360e11b8152600481018490529091506001600160a01b03821690634cdad506906024015b602060405180830381865afa158015610a3b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5f9190611926565b949350505050565b5f818310610a76575083610a5f565b5f610a81848461196c565b90505f6301e13380610a9b670de0b6b3a76400008461197f565b610aa591906119aa565b9050670de0b6b3a76400005f610abb88836119bd565b90505f610ac782610e19565b90505f610ae784610ad887856119e4565b610ae29190611a13565b610eb0565b90505f81610af5868e6119e4565b610aff9190611a13565b9c9b505050505050505050505050565b5f818311610b1d5781610b1f565b825b9392505050565b5f818310610b1d5781610b1f565b60405163c661065760e01b8152600160048201525f9081906001600160a01b0384169063c661065790602401602060405180830381865afa158015610b7b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b9f919061193d565b90505f816001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bde573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c029190611926565b9050428111610c9857816001600160a01b03166368c1f7f6836001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c56573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7a9190611926565b6040518263ffffffff1660e01b8152600401610a2091815260200190565b5f846001600160a01b031663fd0684b16040518163ffffffff1660e01b81526004015f60405180830381865afa158015610cd4573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610cfb9190810190611a53565b604051636872765360e01b81525f6004820152909150610e10906001600160a01b03871690636872765390602401602060405180830381865afa158015610d44573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d689190611926565b670de0b6b3a7640000610e0984600181518110610d8757610d87611b0c565b6020026020010151855f81518110610da157610da1611b0c565b6020026020010151886001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610de5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e099190611926565b91906112bc565b95945050505050565b5f808213610e5e5760405162461bcd60e51b815260206004820152600d60248201526c6f7574206f6620626f756e647360981b60448201526064015b60405180910390fd5b670c7d713b49da000082138015610e7c5750670f43fc2c04ee000082125b15610ea757670de0b6b3a7640000610e938361137b565b81610ea057610ea0611996565b0592915050565b61097882611498565b5f680238fd42c5cf03ffff198212158015610ed4575068070c1cc73b00c800008213155b610f135760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610e55565b5f821215610f4257610f26825f03610eb0565b6a0c097ce7bc90715b34b9f160241b81610ea057610ea0611996565b5f6806f05b59d3b20000008312610f8157506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000610fb7565b6803782dace9d90000008312610fb357506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380610fb7565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126110075768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412611043576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261107d57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126110b7576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac620000084126110f057680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126111295768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412611162576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261119b5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b5f838302815f1985870982811083820303915050805f036112f0578382816112e6576112e6611996565b0492505050610b1f565b8084116113105760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff19850102816113bb576113bb611996565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a76400008212156114d7576114cf826a0c097ce7bc90715b34b9f160241b816114c9576114c9611996565b05611498565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261152757770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261155f576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126115a7576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126115e2576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261161957693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261165057690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126116855768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126116b057680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126116e5576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f1775788937937831261171a576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261174e576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611782576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816117aa576117aa611996565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6001600160a01b0381168114611851575f80fd5b50565b5f805f60608486031215611866575f80fd5b83356118718161183d565b925060208401356118818161183d565b929592945050506040919091013590565b5f6020808352835180828501525f5b818110156118bd578581018301518582016040015282016118a1565b505f604082860101526040601f19601f8301168501019250505092915050565b5f602082840312156118ed575f80fd5b813569ffffffffffffffffffff81168114610b1f575f80fd5b5f60208284031215611916575f80fd5b815160ff81168114610b1f575f80fd5b5f60208284031215611936575f80fd5b5051919050565b5f6020828403121561194d575f80fd5b8151610b1f8161183d565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561097857610978611958565b808202811582820484141761097857610978611958565b634e487b7160e01b5f52601260045260245ffd5b5f826119b8576119b8611996565b500490565b8082018281125f8312801582168215821617156119dc576119dc611958565b505092915050565b8082025f8212600160ff1b841416156119ff576119ff611958565b818105831482151761097857610978611958565b5f82611a2157611a21611996565b600160ff1b82145f1984141615611a3a57611a3a611958565b500590565b634e487b7160e01b5f52604160045260245ffd5b5f6020808385031215611a64575f80fd5b825167ffffffffffffffff80821115611a7b575f80fd5b818501915085601f830112611a8e575f80fd5b815181811115611aa057611aa0611a3f565b8060051b604051601f19603f83011681018181108582111715611ac557611ac5611a3f565b604052918252848201925083810185019188831115611ae2575f80fd5b938501935b82851015611b0057845184529385019392850192611ae7565b98975050505050505050565b634e487b7160e01b5f52603260045260245ffdfe4942542f505420437572766520506f6f6c204f7261636c653a205457415020505420707269636520696e2061737365742e204c6f77657220626f756e64656420627920746865205a4342206d6f64656c206163636f7264696e6720746f205f696d706c69656452617465616e6420757070657220626f756e6465642062792074686520726564656d7074696f6e2076616c7565a264697066735822122012dc97c76f0978a7ca1bfad4ada2837cb47bde11cc6b84f8dc206076fc55724c64736f6c63430008140033

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100b1575f3560e01c80637284e4161161006e5780637284e416146101445780639a6fc8f514610159578063c185f58f146101a3578063c43f357b146101ab578063dc263022146101be578063feaf968c146101d1575f80fd5b806316f0115b146100b55780631794bb3c146100e4578063204f83f9146100f9578063313ce5671461011057806338d52e0f1461012a57806354fd4d501461013d575b5f80fd5b5f546100c7906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100f76100f2366004611854565b6101d9565b005b61010260025481565b6040519081526020016100db565b6101186102eb565b60405160ff90911681526020016100db565b6003546100c7906001600160a01b031681565b6001610102565b61014c61035b565b6040516100db9190611892565b61016c6101673660046118dd565b610377565b6040805169ffffffffffffffffffff968716815260208101959095528401929092526060830152909116608082015260a0016100db565b603254610102565b6004546100c7906001600160a01b031681565b6001546100c7906001600160a01b031681565b61016c610398565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f8115801561021e5750825b90505f8267ffffffffffffffff16600114801561023a5750303b155b905081158015610248575080155b156102665760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561029057845460ff60401b1916600160401b1785555b61029b8888886103b8565b83156102e157845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b6003546040805163313ce56760e01b815290515f926001600160a01b03169163313ce5679160048083019260209291908290030181865afa158015610332573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103569190611906565b905090565b6040518060c0016040528060938152602001611b216093913981565b5f805f805f806103856103d1565b90979096505f9550859450849350915050565b5f805f805f806103a66103d1565b90969095505f94508493508392509050565b6103c06103da565b6103ca8383610425565b6032555050565b5f61035661043b565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff1661042357604051631afcd79f60e31b815260040160405180910390fd5b565b61042d6103da565b6104378282610454565b5050565b5f8054603254610356916001600160a01b0316906105f5565b61045c6103da565b5f80546001600160a01b038084166001600160a01b0319928316179092556001805492851692909116821790556040805163204f83f960e01b8152905163204f83f9916004808201926020929091908290030181865afa1580156104c2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104e69190611926565b600281905550816001600160a01b0316636f307dc36040518163ffffffff1660e01b8152600401602060405180830381865afa158015610528573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061054c919061193d565b60035f6101000a8154816001600160a01b0302191690836001600160a01b03160217905550816001600160a01b031663c644fe946040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105ad573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d1919061193d565b600480546001600160a01b0319166001600160a01b03929092169190911790555050565b60405163c661065760e01b8152600160048201525f9081906001600160a01b0385169063c661065790602401602060405180830381865afa15801561063c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610660919061193d565b90505f816001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa15801561069f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106c39190611926565b90504281116107a157816001600160a01b0316634cdad506836001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610717573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061073b9190611926565b6040518263ffffffff1660e01b815260040161075991815260200190565b602060405180830381865afa158015610774573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107989190611926565b92505050610978565b5f826001600160a01b0316634cdad506846001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107ed573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108119190611926565b6040518263ffffffff1660e01b815260040161082f91815260200190565b602060405180830381865afa15801561084a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061086e9190611926565b90505f61087a8761097e565b90505f610954856001600160a01b0316634cdad506876001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108ef9190611926565b6040518263ffffffff1660e01b815260040161090d91815260200190565b602060405180830381865afa158015610928573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061094c9190611926565b884287610a67565b90505f6109618383610b0f565b90505f61096e8286610b26565b9750505050505050505b92915050565b5f8061098983610b34565b60405163c661065760e01b81525f600482018190529192506001600160a01b0385169063c661065790602401602060405180830381865afa1580156109d0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f4919061193d565b60405163266d6a8360e11b8152600481018490529091506001600160a01b03821690634cdad506906024015b602060405180830381865afa158015610a3b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5f9190611926565b949350505050565b5f818310610a76575083610a5f565b5f610a81848461196c565b90505f6301e13380610a9b670de0b6b3a76400008461197f565b610aa591906119aa565b9050670de0b6b3a76400005f610abb88836119bd565b90505f610ac782610e19565b90505f610ae784610ad887856119e4565b610ae29190611a13565b610eb0565b90505f81610af5868e6119e4565b610aff9190611a13565b9c9b505050505050505050505050565b5f818311610b1d5781610b1f565b825b9392505050565b5f818310610b1d5781610b1f565b60405163c661065760e01b8152600160048201525f9081906001600160a01b0384169063c661065790602401602060405180830381865afa158015610b7b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b9f919061193d565b90505f816001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bde573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c029190611926565b9050428111610c9857816001600160a01b03166368c1f7f6836001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c56573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7a9190611926565b6040518263ffffffff1660e01b8152600401610a2091815260200190565b5f846001600160a01b031663fd0684b16040518163ffffffff1660e01b81526004015f60405180830381865afa158015610cd4573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610cfb9190810190611a53565b604051636872765360e01b81525f6004820152909150610e10906001600160a01b03871690636872765390602401602060405180830381865afa158015610d44573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d689190611926565b670de0b6b3a7640000610e0984600181518110610d8757610d87611b0c565b6020026020010151855f81518110610da157610da1611b0c565b6020026020010151886001600160a01b0316631f2b4f246040518163ffffffff1660e01b8152600401602060405180830381865afa158015610de5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e099190611926565b91906112bc565b95945050505050565b5f808213610e5e5760405162461bcd60e51b815260206004820152600d60248201526c6f7574206f6620626f756e647360981b60448201526064015b60405180910390fd5b670c7d713b49da000082138015610e7c5750670f43fc2c04ee000082125b15610ea757670de0b6b3a7640000610e938361137b565b81610ea057610ea0611996565b0592915050565b61097882611498565b5f680238fd42c5cf03ffff198212158015610ed4575068070c1cc73b00c800008213155b610f135760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610e55565b5f821215610f4257610f26825f03610eb0565b6a0c097ce7bc90715b34b9f160241b81610ea057610ea0611996565b5f6806f05b59d3b20000008312610f8157506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000610fb7565b6803782dace9d90000008312610fb357506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380610fb7565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126110075768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412611043576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261107d57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126110b7576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac620000084126110f057680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126111295768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412611162576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261119b5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b5f838302815f1985870982811083820303915050805f036112f0578382816112e6576112e6611996565b0492505050610b1f565b8084116113105760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff19850102816113bb576113bb611996565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a76400008212156114d7576114cf826a0c097ce7bc90715b34b9f160241b816114c9576114c9611996565b05611498565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261152757770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261155f576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126115a7576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126115e2576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261161957693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261165057690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126116855768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126116b057680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126116e5576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f1775788937937831261171a576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261174e576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611782576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816117aa576117aa611996565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6001600160a01b0381168114611851575f80fd5b50565b5f805f60608486031215611866575f80fd5b83356118718161183d565b925060208401356118818161183d565b929592945050506040919091013590565b5f6020808352835180828501525f5b818110156118bd578581018301518582016040015282016118a1565b505f604082860101526040601f19601f8301168501019250505092915050565b5f602082840312156118ed575f80fd5b813569ffffffffffffffffffff81168114610b1f575f80fd5b5f60208284031215611916575f80fd5b815160ff81168114610b1f575f80fd5b5f60208284031215611936575f80fd5b5051919050565b5f6020828403121561194d575f80fd5b8151610b1f8161183d565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561097857610978611958565b808202811582820484141761097857610978611958565b634e487b7160e01b5f52601260045260245ffd5b5f826119b8576119b8611996565b500490565b8082018281125f8312801582168215821617156119dc576119dc611958565b505092915050565b8082025f8212600160ff1b841416156119ff576119ff611958565b818105831482151761097857610978611958565b5f82611a2157611a21611996565b600160ff1b82145f1984141615611a3a57611a3a611958565b500590565b634e487b7160e01b5f52604160045260245ffd5b5f6020808385031215611a64575f80fd5b825167ffffffffffffffff80821115611a7b575f80fd5b818501915085601f830112611a8e575f80fd5b815181811115611aa057611aa0611a3f565b8060051b604051601f19603f83011681018181108582111715611ac557611ac5611a3f565b604052918252848201925083810185019188831115611ae2575f80fd5b938501935b82851015611b0057845184529385019392850192611ae7565b98975050505050505050565b634e487b7160e01b5f52603260045260245ffdfe4942542f505420437572766520506f6f6c204f7261636c653a205457415020505420707269636520696e2061737365742e204c6f77657220626f756e64656420627920746865205a4342206d6f64656c206163636f7264696e6720746f205f696d706c69656452617465616e6420757070657220626f756e6465642062792074686520726564656d7074696f6e2076616c7565a264697066735822122012dc97c76f0978a7ca1bfad4ada2837cb47bde11cc6b84f8dc206076fc55724c64736f6c63430008140033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.